無線工学A503

R7.07-1A4
R3.07-1A2
R2.11-2A2
R2.11-1A2

解答

R7.07-1A4

2 \(1-j   \sqrt{2}e^{-j\frac{π}{4}}   -\frac{π}{4}\)

ワンポイント解説

(2) 符号“1,0”のときは、上図の右下ですので、
  複素包絡線で表すと、\(1-j\) -A
  指数関数による極座標表示にすると、eの自乗は位相となるので\(-j\frac{π}{4}\) -B
  \(\cos\)波の信号表現で表すと位相は\(-\frac{π}{4}\) -C

R3.07-1A2

1 3π/4  π/4

R2.11-2A2

2 \(A/\sqrt{2}  -A/\sqrt{2}  -\)

R2.11-1A2

1 \(-\frac{3π}{4}  -\frac{π}{4}  +\frac{3π}{4}\)

(3)と(4)の[ ]内をグラフに書くと下記になる。

 “1,1”の位相は\(-\frac{3π}{4}\) -A
 “0,1”の位相は\(-\frac{π}{4}\) -B
 “1,0”の位相は\(\frac{3π}{4}\) -C

検索用キーワード(問題文の最初の一文)

・図に示すQPSK変調器の原理的な構成例のQPSK波s(t)
・図1に示すQPSK変調器の原理的な構成例のQPSK波s(t)

コメント

タイトルとURLをコピーしました